The Lead and Copper Rule
Cedar Rapids’ Journey to Compliance

Barb Wagner, Cedar Rapids Water Department
Shelli Lovell, Central Iowa Water Association
John North, Iowa Association of Water Agencies
Iowa’s Drinking Water: Could Flint Happen Here?

• In the early 1990s, Cedar Rapids’ was in violation of the new standard for lead in drinking water. The exceedance was:
 • Major, extensive & over a prolonged period of time
 • Both similarities & dissimilarities between events in Flint and Cedar Rapids

• This presentation will discuss:
 • Scope and nature of the Cedar Rapids’ lead corrosion phenomenon
 • Our response – Initial and long-term
 • How we ultimately achieved compliance
 • Lessons learned

• This presentation will also discuss:
 • Our “dirty laundry” – what we should have done better or differently
 • Our “points of pride” – what we did right
Lead and Copper Rule (LCR)

National Primary Drinking Water Regulation (NPDWR) Promulgated on June 7, 1991

• Addresses corrosion of lead and copper in drinking water primarily from lead service lines and household plumbing (brass fixtures)

• Maximum Contaminant Level Goals (MCLGs)
 • Lead - 0 ug/l (micrograms per liter)
 • Copper – 1.3 mg/l (milligrams per liter)

• Requires a treatment technique (optimized corrosion control) rather than a Maximum Contaminant Level (MCL)

• Tap Sample results are compared to an Action Level (AL) standard
 • Lead - 15 ug/l (or 0.015 mg/l)
 • Copper - 1.3 mg/l

• Action level for lead is a screen or indicator for optimal corrosion control. It is based on treatment feasibility; NOT on a health threshold
Regulatory Standard for Lead in Drinking Water

• Prior to June 1991
 • Maximum Contaminant Level (MCL) for Lead - 50 ug/l
 • Sampled at the point of entry into water distribution system
 • Lead rarely detected and compliance generally not an issue

• Subsequent to June 1991
 • Action Level for Lead – 0.015mg/l (or 15 ug/l)
 • Monitoring – At representative locations in distribution system deemed to be highest risk
 • Minimum # of samples based on population (CR minimum - 100 samples)
 • 90% of all sample results had to be less than the AL of 15 ug/l
 • Sampling Protocol: Conditions/locations most conducive for lead corrosion
 • Homes with lead service lines
 • Homes constructed between 1982-1986
 • First-draw samples after period of prolonged non-use (6 hours minimum)
Lead and Copper Rule
Regulatory Intent and Goals

• Universal Concerns re: Detrimental Health Effects of Lead
 • Young children
 • Pregnant women
 • All consumers

• Lead and Copper Rule
 • Provide a protective standard for water as it consumed or used
 • Complement other new standards for lead content (e.g. solder, brass fixtures)

• Potential Sources of Lead (corrosion or leaching)
 • Lead Service Lines
 • Lead Solder Joints
 • Brass Fixtures – faucets, water meters et al.
Exceedance of the Action Level
Actions Triggered

• If the 90th percentile of a systems lead sampling results exceed the Action Level for lead, a system must:
 • Optimize corrosion control
 • Identify and install optimal corrosion control treatment
 • Comply with State-specified optimal water quality control parameters
 • Public Education
 • Mandatory language for pamphlets and brochures on lead
 • Media notice (radio, TV and newspaper)
 • Deliver informational materials to:
 • All customers
 • Organizations that serve sensitive subpopulations (e.g. schools, pediatricians)
 • Triggered Lead Service Line Replacement
 • Required if unable to achieve compliance (via corrosion-control treatment strategy)
 • Replace the portion of the lead service lines owned by the water utility
 • Offer to replace the customer’s portion of the service line at cost
 • Replace 7% of lead service lines each year
Cedar Rapids Water System

• Water Service Line Materials - Prior to about 1945 to 1947
 • Lead line – From Main to Stop Box (Utility owned and responsibility)
 • Galvanized Pipe – From stop box to house (Property owner’s responsibility)

• Monitoring Sites for LCR Compliance in 1992
 • Homes with lead service lines
 • Older homes in core or older, central area of Cedar Rapids
 • Higher percentage of lower-income families
 • Homes constructed between 1982-1986
 • New home construction concentrated in two new developments on fringes of CR
 • Predominantly middle to higher income families
Cedar Rapids Water System

• Corrosion Control Strategy – Prior to 1992
 • Finished water chemistry
 • Shallow alluvial wells, lime softening and chloramination
 • pH @ 9.3
 • Addition of Polyphosphates as a corrosion inhibitor
 • A slightly positive Langelier Index (i.e. water tends to deposit protective coatings)

• Immediately prior to first round of compliance monitoring
 • General Assumption: Protective biofilm/deposition layer was in place
 • Conducted preliminary monitoring
 • Limited number of samples (about 20)
 • Majority taken from homes with lead service lines
 • No indication of significant lead corrosion and/or possible compliance issues
CRWD – First Round of Compliance Monitoring
January – July 1992

• Regulatory Compliance Requirements
 • Minimum of 100 samples
 • Locations and conditions (first-draw, 6 hours of non-use) most conducive to lead corrosion
 • 90th percent value for lead test results must be < 0.015 mg/l

• Lead Monitoring Results
 • Samples – 105 locations
 • 90th percent value - 0.055 mg/l (Or 2.7 times higher than the A.L.)
 • # of samples exceeding A.L. – 59 (Or 56% of all samples)
 • Average Value – 0.027 mg/l
 • Median Value – 0.017 mg/l
 • Maximum Value – 0.174 mg/l

• Front Page of USA Today as a “Top Ten City for Lead Levels in Drinking Water”
CRWD’s Initial Response

• Hired a consulting engineer
• Continued to monitor representative sites
• Conducted bench tests to evaluate water chemistry adjustments
• Consulted with Iowa DNR
• Implemented new finished water chemistry in November 1992
 • Switched from polyphosphates to zinc orthophosphate (ZnPO4)
 • Added zinc orthophosphate at a higher than normal dose
 • Lowered finished water pH to 8.3 (from prior 9.3 target)
• Second round of compliance monitoring completed in Nov-Dec, 1992
• We shared test results with home owners
Lead Compliance Monitoring Results through Round # 2

<table>
<thead>
<tr>
<th></th>
<th>Round # 1 Jan-Jun, 1992</th>
<th>Round # 2 Nov – Dec, 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td># of samples</td>
<td>105</td>
<td>101</td>
</tr>
<tr>
<td>90<sup>th</sup> Percentile Value</td>
<td>0.055 mg/l</td>
<td>0.042 mg/l</td>
</tr>
<tr>
<td># exceeding the A.L.</td>
<td>59</td>
<td>50</td>
</tr>
<tr>
<td>Mean Value</td>
<td>0.027 mg/l</td>
<td>0.029 mg/l</td>
</tr>
<tr>
<td>Median Value</td>
<td>0.017 mg/l</td>
<td>0.015 mg/l</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>0.174 mg/l</td>
<td>0.428 mg/l</td>
</tr>
</tbody>
</table>
Lead Compliance Monitoring Results through Round # 3

<table>
<thead>
<tr>
<th></th>
<th>Round # 1 Jan-Jun, 1992</th>
<th>Round # 2 Nov – Dec, 1992</th>
<th>Round # 3 December 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td># of samples</td>
<td>105</td>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>90<sup>th</sup> Percentile Value</td>
<td>0.055 mg/l</td>
<td>0.042 mg/l</td>
<td>0.026 mg/l</td>
</tr>
<tr>
<td># exceeding the A.L.</td>
<td>59</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>Mean Value</td>
<td>0.027 mg/l</td>
<td>0.029 mg/l</td>
<td>0.011 mg/l</td>
</tr>
<tr>
<td>Median Value</td>
<td>0.017 mg/l</td>
<td>0.015 mg/l</td>
<td>0.002 mg/l</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>0.174 mg/l</td>
<td>0.428 mg/l</td>
<td>0.472 mg/l</td>
</tr>
</tbody>
</table>
Lead Compliance Monitoring Results through Round # 4

<table>
<thead>
<tr>
<th></th>
<th>Round # 1 Jan-Jun, 1992</th>
<th>Round # 2 Nov–Dec, 1992</th>
<th>Round # 3 December 1994</th>
<th>Round # 4 December 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td># of samples</td>
<td>105</td>
<td>101</td>
<td>103</td>
<td>100</td>
</tr>
<tr>
<td>90th Percentile Value</td>
<td>0.055 mg/l</td>
<td>0.042 mg/l</td>
<td>0.026 mg/l</td>
<td>0.014 mg/l</td>
</tr>
<tr>
<td># Exceeding the A.L.</td>
<td>59</td>
<td>50</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Mean Value</td>
<td>0.027 mg/l</td>
<td>0.029 mg/l</td>
<td>0.011 mg/l</td>
<td>0.006 mg/l</td>
</tr>
<tr>
<td>Median Value</td>
<td>0.017 mg/l</td>
<td>0.015 mg/l</td>
<td>0.002 mg/l</td>
<td>0.003 mg/l</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>0.174 mg/l</td>
<td>0.428 mg/l</td>
<td>0.472 mg/l</td>
<td>0.027 mg/l</td>
</tr>
</tbody>
</table>
Exceedance Excursions
Rounds # 7, # 8 & # 9

<table>
<thead>
<tr>
<th></th>
<th>Round # 7 Nov- Dec, 1998</th>
<th>Round # 8 May - June, 1999</th>
<th>Round # 9 Nov- Dec 1999</th>
<th>Round # 10 Jan- July 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td># of samples</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>191</td>
</tr>
<tr>
<td>90th Percentile Value</td>
<td>0.018 mg/l</td>
<td>0.028 mg/l</td>
<td>0.015 mg/l</td>
<td>0.009 mg/l</td>
</tr>
<tr>
<td># Exceeding the A.L.</td>
<td>14</td>
<td>22</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Mean Value</td>
<td>0.008 mg/l</td>
<td>0.012 mg/l</td>
<td>0.006 mg/l</td>
<td>0.004 mg/l</td>
</tr>
<tr>
<td>Median Value</td>
<td>0.002 mg/l</td>
<td>0.004 mg/l</td>
<td>0.003 mg/l</td>
<td>0.002 mg/l</td>
</tr>
<tr>
<td>Maximum Value</td>
<td>0.201 mg/l</td>
<td>0.133 mg/l</td>
<td>0.071 mg/l</td>
<td>0.090 mg/l</td>
</tr>
</tbody>
</table>
Lead Compliance Monitoring Summary 1992 through 2015

90th Percentile Value for Lead

Lead concentration mg/l

90th Percentile Value
Action Level
Lead Compliance Monitoring Summary 1992 through 2015

Number of Samples above the 0.015 mg/l Action Level
CRWD’s Research and Response
Extensive and Prolonged Distribution System Monitoring

• Research and Monitoring at “High-Risk” Homes
 • Homes with lead service lines or constructed between 1982 - 1986
 • First-Draw lead & copper samples
 • Water chemistry profiles
 • Two or more locations in same home
 • Analysis of multiple, sequential one – liter samples
 • Lead service lines: Capture & analyze water in direct contact with lead service line
 • 1982-86 Homes: Lead corrosion at the faucet or elsewhere in home’s plumbing system?
 • Analysis of Samples – Unfiltered & filtered (Soluble or particulate matter?)

• Monitoring throughout Distribution System to ensure:
 • No degradation of general water quality parameters
 • No loss of disinfectant and/or bacterial growths
 • Appropriate dispersion of corrosion inhibitor – ZnPO4
CRWD’s Research and Response Extensive and Prolonged Loop Studies

• 8 - 10 Loops constructed to simulate home’s internal plumbing system
 • Approximately 25 feet of copper piping with and w/o solder joints
 • Faucets
 • Solenoid valves/timers for controlled “flow usage or flushing”

• Research focus or “variables” studied
 • Water chemistry
 • Corrosion inhibitors
 • Different Products: Polyphosphates, Zinc Orthophosphate, Phosphoric Acid, et al
 • Different Manufacturers or formulations of same “generic” product (especially ZnPO4)
 • Different concentrations of same product

• Research and Monitoring Activities
 • Water chemistry profiles
 • Monitoring of first-draw lead & copper samples
 • Analysis of sequential one – liter samples
 • Analysis of Samples – As collected (unfiltered) then filtered
CRWD’s Research and Response Distribution System

• Implemented Policy: Remove lead service lines at every opportunity
 • Street projects
 • Water line replacement projects
 • Water main and service line breaks

• Encouraged home owners: Replace your portion of service line (galvanized)
 • Major projects: CRWD solicited unit cost quotes for service line replacement work
 • For financially strapped customers:
 • CRWD underwrote the service line replacement costs incurred by the customer
 • Customer repaid the CRWD over five years via a surcharge on their utility bill
CRWD’s Research and Response
Extensive Public Relations & Information Efforts

• Our Commitments or Guiding Principles:
 • Protection of Public Health is Paramount
 • Be fully open and honest
 • Be as responsive as possible to public inquiries and concerns

• Mailings and Distribution of Informational Materials
 • EPA Mandated Information and Language
 • Additional Information about:
 • Scope and nature of the lead corrosion problem
 • Current activities
 • Strategic plan for identifying & implementing “treatment regimen for optimal corrosion control”

• Targeted Mailings and Outreaches
 • Schools, day care centers, et. al.
 • Pediatricians and other health care providers

• Coordinated and worked closely with:
 • Linn County Health Department
 • Local news media, especially the CR Gazette
 • Iowa Department of Natural Resources

• Regular Status Reports to City Council (televised)
Lessons Learned – Scientific & Research Findings

• Water chemistry and lead corrosion are complex
 • Multiple factors may affect or contribute to lead corrosion
 • There are no simple explanations or causes
 • There are no easy answers
 • There are trade-offs (e.g. Zinc creates a compliance challenge for WPC)

• Possible factors that might affect lead corrosion
 • Raw water source – surface water, shallow or deep wells
 • Type of water treatment (minimal treatment or lime softening or other method)
 • pH of the finished water
 • Stability of finished water (slightly depositing versus slightly corrosive)
 • Corrosion Inhibitor – type and feed rate
 • Disinfection method – chlorination or chloramination
Lessons Learned – Scientific & Research Findings

• Switch in water chemistry & corrosion inhibitor
 • Is a slow, long-term endeavor
 • May experience “spikes” during the transition

• Lead Service Lines were not a major source or contributor in CR
 • Demonstrated via analysis of samples in prolonged, direct contact with lead
 • High test results due to newly installed faucets and/or recent plumbing work

• Preponderance of high results were from homes constructed 1982-1986
• Brass fixtures and/or solder joints were likely the primary “culprits” in CR
• Occasional high results likely due to lead particles (i.e. not soluble lead)
Other Questions, Observations & Musings

- Some brass (manufacturers, lots etc.) might be more susceptible to corrosion
 - Monitoring of similar sites showed consistent & significantly different levels of lead
 - Monitoring of immediately adjacent homes - same contactor, age and brand of faucets
 - Monitoring of multiple faucets in same home to include side-by-side units in a master bathroom
 - Replaced a “problem” faucet – new unit in compliance within 30 days
 - Anecdotal evidence that some imported brass might have been more susceptible to lead corrosion
 - Quality of plumbing workmanship a possible factor (excessive, loose solder?)

- Apparent variation in efficacy of ZnPO4 from different manufacturers

- Zinc Orthophosphate has some aesthetic issues
 - Discoloration of plumbing fixtures
 - Discoloration of toilet tanks
Other Questions, Observations & Musings

• Was the treatment regimen change the “right, long-term” decision?
 • No compliance issues @ other Iowa cities with comparable water treatment regimens
 • Lament: Not able to research why the prior treatment regimen/inhibitor failed

• Explanation for efficacy of the new treatment regimen/corrosion inhibitor?
 • ZnPO4 provides a more effective protective layer than polyphosphates?
 • Readily available lead and lead particulate matter were leached/flushed over time?
 • Or some combination of the above factors?
 • Or other unknown factors?
Other Questions, Observations & Musings

• Cedar Rapids expended an enormous amount of money & time in researching/resolving its lead corrosion problem (Est. @ $1.0 Million plus)

• In a “perfect world”, a more beneficial use would be removal of lead-based paint from homes

• CRWD compiled a significant amount of monitoring data, observations and information regarding CRWD’s lead corrosion challenges

• Lament is that we did not have the time and resources to do so in a fully comprehensive, methodical manner that would facilitate research of the lead corrosion phenomenon (e.g. scientific publication)
Lessons Learned – “Crisis Management”

• Best Approach
 • Recognize that Protection of Public Health is the ultimate goal
 • Be open and honest
 • Admit when you don’t know
 • Citizen Concerns: Listen, acknowledge concerns and demonstrate empathy
 • Communicate, communicate, communicate!
 • Do the “Right Thing for the Right Reason”

• Allow appropriate individuals to make the appropriate decisions
 • Primary focus should be the problem(s) and solution(s)

• Recognize that others will call into question your individual or team’s
 • Professional competency
 • Honesty and integrity
Lessons Learned – A “Self-Critique”
What we did wrong or wish we could have done better

• We were too complacent! Prior to compliance monitoring, we should have:
 • Been more questioning – Is this the optimal finished water chemistry & corrosion inhibitor?
 • Done more sampling – Do we have a problem?

• We put ourselves in a position where we had to make decisions “on the fly”
 • What is the optimal water chemistry and corrosion inhibitor for CR?
 • Will the “quick and dirty” bench studies work on a system-wide scale?
 • Did we make the right or best decision for the long-term??

• “The Crisis was managing us – We were not managing the Crisis!”
A “Self-Critique” What We Did Right!

• After our wake up call, We
 • Acknowledged the situation
 • Made Protection of Public Health our primary focus
 • Marshalled all of our resources
 • Worked as a team and were relentless and determined in our efforts

• We deferred to Medical Professionals re: potential health issues
 • Linn County Health Director: “Three primary causes of elevated lead levels are lead-based paint, lead-based paint, and lead-based paint”

• CR City Leaders and Citizens
 • Deferred to us on technical matters ***
 • Priority – Researching and resolving the problem ***
 • Minimal finger-pointing, posturing and “CYA” activity ***
 • Allowed us an opportunity to regain their TRUST ***

*** There were some exceptions
The CRWD “Response Team”

- Citizens of Cedar Rapids
 - Mayor and Council, especially Mayor Serbousek & Councilman Lyle Hanson
 - Customers, especially those that served as sample sites

- Cedar Rapids Water & WPC Departments
 - Laboratory – Tom Noth, Roger Pfeiffer, Barb Wagner
 - CRWD Staff – especially customer service and plant maintenance crew
 - Cedar Rapids WPC Laboratory – completed all the metal analyses

- Local Agencies – Linn County Health, CR Gazette & local news media

- Iowa DNR – Dennis Alt, Roy Ney and Diane Moles
Ways to Reduce Potential Exposure to Lead in Drinking Water

• Always flush line before drawing water for consumption purposes (drinking, preparation of food or baby formula)
 • After prolonged periods of non-use: Flush until water is as cold as it is going to get
 • During periods of normal use: Flush long enough to purge the water in direct contact with the faucet

• **Never Use Hot Water** for consumption purposes (drinking, preparation of food or baby formula)
 • Hot water will leach lead much faster than cold water

• Questions about your drinking water
 • Consumer Confidence Report (Water Quality) – Posted on line
 • Contact your water utility