Transportation & Vehicle Safety Policy

Anti-idiotypic antibodies bearing the internal image of a bradykinin epitope. Production, characterization, and interaction with the kinin receptor.

Haasemann, M.; Buschko, J.; Faussner, A.; Roscher, A.A.; Hoebeke, J.; Burch, R.M.; Müller-Esterl, W.
1991 Dec 1

Abstract

mAb against bradykinin, the prototypic member of the kinin family of vasodilator peptides, were generated by somatic cell fusion. The antibodies were isotyped as IgG1, kappa-type, and their target epitopes mapped with bradykinin, lysyl-bradykinin (kallidin), kinin receptor antagonists, and fragments thereof, revealing three distinct sets of mAb, i.e., mAb against bradykinin (MBK)1, MBK2, and MBK3. Comparison of the immunologic binding affinities and the known pharmacologic binding specificities of bradykinin derivatives disclosed a striking similarity in the binding profiles of mAb MBK3 and the B2 type of the kinin receptor. Anti-idiotypic antibodies against MBK1, MBK2, and MBK3 were raised in rabbit and sheep. Inhibition and competition experiments on the level of the Ag (ligand), the idiotype, and the anti-idiotype demonstrated the mutual specificity of the network system components. Anti-idiotypic antibodies against MBK3 recognized a particular idiotope that was conformation-dependent and associated with the Ag binding site of the antibody. Binding of anti-idiotypic antibodies to the B2 receptor expressed by human foreskin fibroblasts and guinea pig ileum demonstrated that the anti-idiotypes cross-react with the corresponding receptor across species. Specific stimulation of the inositol phosphate pathway in human fibroblasts and of the PG pathway in mouse fibroblasts, respectively, and inhibition of the latter effect by the B2 kinin receptor antagonist NPC 567 indicated that the anti-idiotypes bear the internal image of a bradykinin epitope. Furthermore, antibodies of the third generation (anti-anti-idiotypic antibodies) recognized the authentic Ag, i.e., bradykinin. Hence, the anti-idiotypic approach provides powerful tools to probe for the hitherto poorly characterized B2 kinin receptor.